gushelom.ru

Så här normaliserar du en vektor

En vektor är ett geometriskt objekt som har en riktning och en magnitud. Den representeras som ett orienterat segment med utgångspunkt och en pil i motsatt ände - segmentets längd är proportionell mot storleken och pilens riktning indikerar riktningen. Normaliseringen av en vektor är en ganska vanlig övning i matematik och har flera praktiska tillämpningar i datorgrafik.

Metod 1

Definiera villkoren
Bildnamn Normalisera ett vektorsteg 1
1
Definiera enhetsvektorn eller versor. Vektorn A är bara en vektor som har samma riktning och riktning A, men en längd som är lika med 1 enhet - vi kan matematiskt bevisa att det bara finns en enhetsvektor för varje vektor A.
  • Bildnamn Normalisera ett vektorsteg 2
    2
    Definiera normalisering av en vektor. Detta är att identifiera enhetsvektorn för den givna A.
  • Bildnamn Normalisera ett vektorsteg 3
    3
    Definiera den applicerade vektorn. Det är en vektor vars initiala punkt sammanfaller med koordinatsystemets ursprung inom ett kartesiskt utrymme. Detta ursprung definieras med koordinatparet (0,0) i ett tvådimensionellt system. På så sätt kan du identifiera bäraren genom att bara referera till terminalpunkten.
  • Bildnamn Normalisera ett vektorsteg 4
    4
    Beskriv vektornotationen. Genom att begränsa dig till de använda vektorerna kan du ange vektorn som A = (x, y), där koordinatparet (x, y) definierar slutpunkten för själva vektorn.
  • Metod 2

    Analysera målet
    Bildnamn Normalisera ett vektorsteg 5
    1
    Upprätta de kända värdena. Från definitionen av versor kan man härleda att utgångspunkten och riktningen sammanfaller med de givna vektorns A-värde. Dessutom vet du säkert att längden på versor är lika med 1.
  • Bildnamn Normalisera ett vektor steg 6
    2
    Bestäm det okända värdet. Den enda variabel du behöver beräkna är vektorens slutpunkt.
  • Metod 3

    Avleda den unitära vektorlösningen
    • Hitta slutpunkten för vektorn kontra A = (x, y). Tack vare proportionaliteten mellan liknande trianglar vet du att varje vektor som har samma riktning som A har sin termin med punkten med koordinater (x / c, y / c) för varje värde av "c"- Dessutom vet du att versets längd är lika med 1. Följaktligen dra fördel av Pythagorasats: [x ^ 2 / c ^ 2 + y ^ 2 / c ^ 2] ^ (1/2) = 1 -> [(x ^ 2 + y ^ 2) / c ^ 2] ^ (1/2) -> (x ^ 2 + y ^ 2) ^ (1/2) / c = 1 -> c = (x ^ 2 + y ^ 2) ^ (1/2) - det följer att versor u av vektorn A = (x, y) definieras som u = (x / (x ^ 2 + y ^ 2) ^ (1/2), y / (x ^ 2 + y ^ 2) ^ (1/2))
    Bildnamn Normalisera ett vektor steg 6

    Metod 4

    Normalisera en vektor i ett tvådimensionellt utrymme
    • Betrakta vektorn A vars initialpunkt sammanfaller med ursprunget och den sista med koordinaterna (2,3), följaktligen A = (2,3). Beräkna versor u = (x / (x ^ 2 + y ^ 2) ^ (1/2), y / (x ^ 2 + y ^ 2) ^ (1/2)) = (2 / (2 ^ 2) + 3 ^ 2) ^ (1/2), 3 / (2 ^ 2 + 3 ^ 2) ^ (1/2)) = (2 / (13 ^ (1/2)), 3 / 1/2))). Sålunda normaliseras A = (2,3) till u = (2 / (13 ^ (1/2)), 3 / (13 ^ (1/2)).
    Bildnamn Normalisera ett vektor steg 6

    Metod 5

    Normalisera en vektor i ett mellanslag med "n" dimensioner
    • Generaliserar normaliseringsekvationen för ett mellanslag med vilket antal dimensioner som helst. Vektorn A (a, b, c, ...) är normaliserad au = (a / z, b / z, c / z, ...) där z = (a ^ 2 + b ^ 2 + c ^ 2 ...) ^ 1/2).
    Dela på sociala nätverk:

    Relaterade
    Hur man beräknar accelerationHur man beräknar acceleration
    Hur man beräknar kinetisk energiHur man beräknar kinetisk energi
    Hur man beräknar intensiteten hos en vektorHur man beräknar intensiteten hos en vektor
    Hur man beräknar den resulterande styrkanHur man beräknar den resulterande styrkan
    Hur man beräknar snabb hastighetHur man beräknar snabb hastighet
    Hur man beräknar ett objekts genomsnittliga och momentant hastighetHur man beräknar ett objekts genomsnittliga och momentant hastighet
    Så här lägger du till en bild till IllustratorSå här lägger du till en bild till Illustrator
    Så här skapar du en S i Adobe IllustratorSå här skapar du en S i Adobe Illustrator
    Hur man skriver en funktion med MATLABHur man skriver en funktion med MATLAB
    Så här manipulerar du strängar i JavaSå här manipulerar du strängar i Java
    » » Så här normaliserar du en vektor

    © 2011—2021 gushelom.ru